The Function and Working Principle of MOSFETs -ASIM

The Function and Working Principle of MOSFETs -ASIM

2025.09.10 00:00:00
51

The core function and working principle of MOSFETs

1. Three core functions

Type of functionImplementation mechanismTypical application scenariosParameter basis
Electronic switchThe gate voltage controls the on-off of the channelPower management/load switchRds(on) as low as 0.8mΩ (such as M010N10T)
Signal amplificationVgs minor change →Id major change (gm transconductance effect)Radio frequency power amplifiergm=2S@Vds=10V(2SK3018)
Impedance transformationInput impedance >10¹²Ω/ Output impedance<1ΩBuffer drive stageCiss=35pF(AM20DP041T)

二、Structural anatomy and carrier motion

2.1 Four-layer physical structure

Gate(G)━━━━━━━━┐
         │       
         ┌──────┘
         ↓ SiO₂Insulating layer (thickness tox=10-100nm)
         ↓  
P-type substrate ━━━[N+ source (S]━━━━[N-Channel]━━━━[N+Drain(D)]


Key dimensions (According to M120N06JC):

  • Channel length L=0.6μm
  • Channel width W=20000μm

2.2 N-MOS Principle of conduction

Electronic motion trajectory

  1. Vgs > Vth(Threshold voltage) → Positive gate voltage attracts electrons
  2. A reverse layer (N-type channel) is formed on the surface of the P-type substrate.
  3. Electrons flow from the S pole through the channel to the D pole

Formula verification

Id = μₙCₒₓ(W/L)[(Vgs-Vth)Vds - 0.5Vds²] (Linear region)


Measured data(2N7002K):
Vgs=4.5V时,Id=1.2A(The calculation error is less than 3%)

三、Workspace characteristics and boundary conditions

3.1 The classification criteria for the three zones

Work areaJudgment conditionsCurrent characteristic
Cut-off areaVgs < VthId < 1μA
Linear regionVgs > Vth and Vds < VodId ∝ Vds
Saturation zoneVgs > Vth and Vds ≥ VodId = Constant value

Note: Vod = Vgs - Vth (Overdrive voltage)

3.2 Output characteristic curve

Data source:M03N12P

  • Point A (Vgs=2V) : Cutoff area (Id=10nA)
  • Point B (Vgs=4V, Vds=1V) : Linear region (Rds=25mΩ)
  • Point C (Vgs=4V, Vds=3V) : Saturation zone (Id=12A)

四、The engineering significance of key parameters

4.1 Static parameters

ParameterDefinition formulaDesign influenceTypical value range
Threshold voltage VthVgs when Id=250μACompatibility of drive circuit0.7V~4V
On-resistance Rds(onThe D-S resistance when Vgs=10VConduction loss0.8mΩ~10Ω
Transconductance gmΔId/Δ Vgs@ constant VdsAmplification gain0.1~20S

4.2 Dynamic parameters

ParameterTest conditionsImpact on switch performance
Input capacitance CissVds=25V, f=1MHzDrive power demand
Grid leakage charge QgdId=0.5A, Vds=30VMiller platform duration
Reverse recovery time trrIf=1A, di/dt=100A/μsBody diode switching loss

五、Failure mechanism and safety boundary

5.1 Avalanche breakdown protection

Avalanche energy formula

Eas = 0.5 × L × Ias²


Case: SCD30PNP is labeled as Eas=150mJ

Design criterion: The actual circuit Eas requirement should be less than 80% of the nominal value

5.2 Prevention of thermal runaway

Stable conditions

∂P_loss/∂Tj < ∂P_diss/∂Tj
P_loss = Id² × Rds(on)(Tj)
P_diss = (Tj - Ta)/RθJA


Critical point calculation: TO 220 package Id_max=60A@Ta=85 ° c (refer to ASIM M060N03YB)

六、Selection Quick Reference Table (Application Scenario-oriented

Application scenariosPriority of core parameters"Recommended Series"
5V logic switchVth<1.5V, Rds(on)@4.5VAO3400/AO3416
48V battery protectionVds>60V, Eas>100mJCSD18540/IRL1004
High-frequency synchronous rectificationQgd<10nC, trr<30nsIPD90N03S4/BSC014N03
Automotive electronicsAEC-Q101认证, Tj=175℃BSC096N10NS5

Appendix: Flowchart for Determining the Workspace

mos管工作区判定流程图.png